Outcomes Following Prolonged Extra Corporeal Membrane Oxygenation Support in Children with Cardiac Disease Extracorporeal Life Support Organization Registry Study

Laura Schoeneberg 1, Geetha Raghuvire 1,2
Eric Dean Merrill 1, Pratik Sandesara 1, Barb Haney 2, Erica Molitor-Kirsch 2, James O’Brien Jr 2, Hongying Dai 1,2
1 University of Missouri-Kansas City School of Medicine, 2 Children’s Mercy Hospital

Background
Optimal timing for discontinuation of Extra Corporeal Membrane Oxygenation (ECMO) in children with cardiac insufficiency who are unable to wean from ECMO is ill-defined.

Objective
Outcomes following prolonged ECMO support (≥14 days) for cardiac insufficiency in children <18 years of age were examined to determine survival and potential predictors for survival.

Methods

Results
Total cardiac ECMO runs: 10,293 - Survival: 45%
784 prolonged ECMO runs in 777 children - Survival: 23%
• Survivors were older (0.64 vs. 0.10, p<0.01).
• Weighed more (7.0 kg vs 4.0 kg, p<0.01).
• Fewer organ system complications (median 4 vs. 3, p<0.01).
• Those with congenital heart disease had a lower survival compared to cardiomyopathy and myocarditis (15% vs. 42% and 52%, p<0.01).
• One ventricle physiology having a worse survival compared to two ventricle physiology(10% vs. 18%, p<0.01).

Eleven percent (n=86) received cardiac transplant, their survival was better compared to those not transplanted (22% vs. 19%, p=0.01).

Pre-ECMO arrest and emergent ECMO placement were not predictors of outcome.

Conclusions
• There is significant attention following prolonged ECMO support for cardiac insufficiency in children.
• Cardiac transplantation in this cohort is also associated with a high mortality.
• In children on ECMO for prolonged cardiac insufficiency, early conversion to other modes of mechanical support may be beneficial.

Bibliography

Survival by Duration

Survival Post-Cardiac Transplantation

Survival by Diagnosis

Multivariate Analysis

With SAS analysis

<table>
<thead>
<tr>
<th></th>
<th>p-value</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocarditis vs. Congenital</td>
<td><0.01</td>
<td>0.7 (2.5 – 8.7)</td>
</tr>
<tr>
<td>Cardiomyopathy vs. Congenital</td>
<td><0.01</td>
<td>3.0 (1.8 – 5.1)</td>
</tr>
<tr>
<td>Days of ECMO (per 3 day increase)</td>
<td><0.01</td>
<td>1.02 (1.01-1.03)</td>
</tr>
<tr>
<td>Weight (per 1 kg increase)</td>
<td><0.01</td>
<td>0.94 (0.91-0.97)</td>
</tr>
<tr>
<td>Renal Complications</td>
<td><0.01</td>
<td>1.45 (1.03-2.07)</td>
</tr>
<tr>
<td>Neurologic Complications</td>
<td>0.03</td>
<td>1.57 (1.20-2.05)</td>
</tr>
<tr>
<td>Metabolic Complications</td>
<td>0.03</td>
<td>1.63 (0.40-5.98)</td>
</tr>
</tbody>
</table>

Of System Complications (mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>All 777</th>
<th>Survivors 176</th>
<th>Non-Survivors 601</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>3.4 ± 1.7</td>
<td>2.8 ± 1.7</td>
<td>3.6 ± 1.6</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Respiratory</td>
<td>3.6 ± 1.8</td>
<td>3.0 ± 1.6</td>
<td>4.0 ± 2.0</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Neurologic</td>
<td>2.0 ± 1.5</td>
<td>1.4 ± 1.1</td>
<td>2.6 ± 1.7</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Renal</td>
<td>1.4 ± 1.0</td>
<td>1.0 ± 0.8</td>
<td>1.8 ± 1.3</td>
<td>< 0.01</td>
</tr>
<tr>
<td>All</td>
<td>10.9 ± 3.0</td>
<td>8.7 ± 2.3</td>
<td>13.1 ± 4.2</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Diagnosis

- Congenital Heart Disease: 18%
- Cardiomyopathy: 42%
- Myocarditis: 52%
- Other: 10%
- One Ventricle Physiology: 18%
- Two Ventricle Physiology: 52%

Complications

- Heart: 3.4 ± 1.7
- Respiratory: 3.6 ± 1.6
- Neurologic: 2.0 ± 1.5
- Renal: 1.4 ± 1.0
- All: 10.9 ± 3.0

130/601: 19%

Of System Complications (mean ± SD)

- Heart: 3.4 ± 1.7
- Respiratory: 3.6 ± 1.6
- Neurologic: 2.0 ± 1.5
- Renal: 1.4 ± 1.0
- All: 10.9 ± 3.0

130/601: 19%