Serum 25-Hydroxyvitamin D3 Concentrations and Carotid Artery Intima-Media Thickness Among High-Risk Children

Nikoo Cheraghi,* H Dai,† Geetha Raghuvan †

• University of Missouri-Kansas City School of Medicine
† Children’s Mercy Hospitals and Clinics, Kansas City, MO

Background
• Single-center, retrospective, observational studies showed that vitamin D deficient states in adults have been found to be associated with hypertension, diabetes, atherosclerosis, myocardial infarction, congestive heart failure, stroke and decreased kidney function.
• Even among adolescents, deficient vitamin D states are associated with hypertension, hyperglycemia, and metabolic syndrome.
• However, a recently released report from the Institute of Medicine showed that although vitamin D is key for bone health, there is no unequivocal evidence that it provides other benefits.
• Certain deleterious vascular effects have been described in adults with deficient vitamin D states, however there is no data pertaining to this in children.

Objective
To determine whether there is a correlation between serum vitamin D levels and carotid artery intima-media thickness - CIMT (a noninvasive tool for assessment of subclinical atherosclerosis) in high-risk children.

Methods
• A PubMed literature search was conducted back to 1966 using the following search terms: “vitamin D,” “cardiovascular,” “pediatric,” and “carotid artery intima-media thickness.” There were no studies describing CIMT and vitamin D status in children.
• Children’s Mercy Institutional Review Board’s permission was obtained prior to commencement of this study.
• This study involved a chart review of 74 children aged 6-22 years old who visited the Children’s Mercy Hospital Preventive Cardiology and Lipid Clinic between January 1, 2009 and December 31, 2010.
• Demographic and anthropometric data including age, sex, race, weight, height, and BMI were gathered. Family history of premature heart disease and history of tobacco smoke exposure were ascertained via an interview. Systolic blood pressure (SBP), fasting lipid profile, insulin and serum 25-hydroxyvitamin D3 data was collected. The season in which the vitamin D levels were measured was recorded as Spring/Summer (March-August) or Fall/Winter (September-February).
• Ultrasound images of the common carotid artery to measure CIMT were obtained.
• Vitamin D was used as a continuous predictor variable and in addition categorized into three levels (Insufficient - < 20 ngm/ml, Borderline - ≥20 to ≤30 ngm/ml, Sufficient > 30 ngm/ml) to examine its relationship with maximum and mean CIMT.
• A univariate (ANOVA) and multivariate analysis (general linear model) were performed comparing vitamin D level and maximum and mean CIMT using SAS program.

Results

Table 1 - Demographic Data

<table>
<thead>
<tr>
<th>Age, years</th>
<th>BMI Z score</th>
<th>SBP mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.7 ± 3.1</td>
<td>0.4 ± 1.1</td>
<td>117 ± 10</td>
</tr>
</tbody>
</table>

Data are presented as mean±SD or percentages.

Table 2 - Anthropometric Data

<table>
<thead>
<tr>
<th>Age, years</th>
<th>BMI, kg/m²</th>
<th>SBP mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.9 ± 6.3</td>
<td>117 ± 10</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 - Laboratory Data

<table>
<thead>
<tr>
<th>Total cholesterol, mg/dl</th>
<th>High Density Lipoprotein Cholesterol, mg/dl</th>
<th>Triglycerides, mg/dl</th>
<th>Insulin, uIU/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>215 ± 45</td>
<td>46 ± 60</td>
<td>193 ± 302</td>
<td>17 ± 22</td>
</tr>
</tbody>
</table>

Table 4 - CIMT Data

<table>
<thead>
<tr>
<th>CIMT maximum (mm)</th>
<th>0.54 ± 0.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIMT mean (mm)</td>
<td>0.46 ± 0.04</td>
</tr>
</tbody>
</table>

Mean Risk Factor Score = 3.3 ± 1.6

Conclusions
• In this cohort, there was no correlation between vitamin D status and CIMT.
• We found SBP to correlate with mean CIMT suggesting that hypertension is a strong atherosclerosis-promoting risk factor beginning in childhood.

Limitations
• The sample size was limited as children were required to have a serum vitamin D level and carotid artery ultrasound performed during the same visit. It is possible that we were not able to prove the hypothesis due to small sample size and low power.
• There were no healthy controls as all the subjects presenting to the clinic had cardiac risk factors.
• This study is a retrospective and observational, therefore, it cannot establish causation.

Bibliography