PERSONALIZING THE INTENSITY OF BLOOD PRESSURE CONTROL: Modeling the Heterogeneity of Risks and Benefits from the SPRINT Trial

Krishna K. Patel, MD,1,2 Suzanne V. Arnold, MD, MHA,1,2 Paul S. Chan, MD, MSc,1,2 Yuanyuan Tang, PhD1,2 Yashashwi Pokharel, MD, MSCR1,2 Philip G. Jones, MS1; John A. Spertus, MD, MPH1,2

1Saint Luke’s Mid America Heart Institute, 2University of Missouri–Kansas City, Kansas City, MO

ABSTRACT

• In SPRINT (Systolic blood Pressure Intervention Trial), patients with hypertension and high cardiovascular risk treated with intensive blood pressure (BP) control (<120 mmHg) had fewer major adverse cardiovascular events (MACE) and deaths, but higher rates of treatment-related serious adverse events (SAE), than those randomized to standard BP control (<140 mmHg).
• However, the degree of benefit or harm for an individual patient likely varies due to heterogeneity in treatment effect.

BACKGROUND

• Using patient-level data from 9361 randomized patients in SPRINT, with median follow-up of 3.3 years, we developed models to predict risk for:
 - MACE or death (MI, non-MI ACS, stroke, all-cause death)
 - Treatment-related SAE (hypertension, syncope, injurious falls, AKI, electrolyte abnormalities, others)
• Models developed using logistic regression
 - Candidate variables selected a priori
 - Interaction terms between treatment and all candidate variables were added to assess heterogeneity
 - Model reduction with Harrell’s backward selection strategy
• Distribution of predicted absolute risks of both outcomes between the 2 treatment strategies (difference in predicted absolute risks of MACE or death and treatment-related SAE, respectively, for each SPRINT patient if treated with intensive and standard BP control) were plotted with histograms
• Validation
 - Internal with Bootstrap resampling
 - External in ACCORD trial (4741 Diabetics with hypertension—mean follow-up of 4.7 years)

RESULTS

<table>
<thead>
<tr>
<th>Table 1: Patient Table Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Min-Max</td>
</tr>
<tr>
<td>Median</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Treatment-related SAE Model Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Mean predicted SAE rate: 2.2% ± 1.2%</td>
</tr>
<tr>
<td>Mean predicted absolute SAE rate: 3.2% ± 1.1%</td>
</tr>
<tr>
<td>Mean predicted absolute SAE rate: 2.2% ± 1.2%</td>
</tr>
<tr>
<td>Mean predicted absolute SAE rate: 3.2% ± 1.1%</td>
</tr>
<tr>
<td>Slope = 0.93, R² = 88%</td>
</tr>
<tr>
<td>Model c-statistic = 0.73, Optimism corrected c-statistic = 0.72</td>
</tr>
<tr>
<td>Figure 1: MACE or Death Model</td>
</tr>
<tr>
<td>Figure 3: Validation in ACCORD</td>
</tr>
<tr>
<td>Figure 5: Potential Model Output at Point of Care</td>
</tr>
</tbody>
</table>

DISCUSSIONS

• Inability to consider potentially related but unmeasured/unavailable factors.
• Patients enrolled in clinical trials are generally healthier, more compliant with treatments, and better monitored for safety than patients in the real world.
• While we did find evidence of some treatment interactions suggesting heterogeneity in treatment effect, there might be other interactions which we did not have the power to detect.

LIMITATIONS

• These models enable the results of a landmark clinical trial to be used in routine patient care to tailor the treatment approach.
• Comparable performance of our models in a cohort of patients with vastly different baseline characteristics strongly supports their external generalizability.
• Further studies are needed to understand the clinical impact of using these models in care and to define performance in other populations including low-risk, younger patients with HTN.

CONCLUSION

• These models enable the results of a landmark clinical trial to be used in routine patient care to tailor the treatment approach.
• Comparable performance of our models in a cohort of patients with vastly different baseline characteristics strongly supports their external generalizability.
• Further studies are needed to understand the clinical impact of using these models in care and to define performance in other populations including low-risk, younger patients with HTN.

CITATION

Yashashwi Pokharel, MD, MSCR1,2, Philip G. Jones, MS1; John A. Spertus, MD, MPH1,2

1Saint Luke’s Mid America Heart Institute, 2University of Missouri–Kansas City, Kansas City, MO

Interested in potentially related but unmeasured/unavailable factors.

Using these Risk Prediction Models

- Inability to consider potentially related but unmeasured/unavailable factors.
- Patients enrolled in clinical trials are generally healthier, more compliant with treatments, and better monitored for safety than patients in the real world.
- While we did find evidence of some treatment interactions suggesting heterogeneity in treatment effect, there might be other interactions which we did not have the power to detect.

CONCLUSION

- These models enable the results of a landmark clinical trial to be used in routine patient care to tailor the treatment approach.
- Comparable performance of our models in a cohort of patients with vastly different baseline characteristics strongly supports their external generalizability.
- Further studies are needed to understand the clinical impact of using these models in care and to define performance in other populations including low-risk, younger patients with HTN.

CITATION

Yashashwi Pokharel, MD, MSCR1,2, Philip G. Jones, MS1; John A. Spertus, MD, MPH1,2

1Saint Luke’s Mid America Heart Institute, 2University of Missouri–Kansas City, Kansas City, MO

Interested in potentially related but unmeasured/unavailable factors.

Using these Risk Prediction Models

- Inability to consider potentially related but unmeasured/unavailable factors.
- Patients enrolled in clinical trials are generally healthier, more compliant with treatments, and better monitored for safety than patients in the real world.
- While we did find evidence of some treatment interactions suggesting heterogeneity in treatment effect, there might be other interactions which we did not have the power to detect.

CONCLUSION

- These models enable the results of a landmark clinical trial to be used in routine patient care to tailor the treatment approach.
- Comparable performance of our models in a cohort of patients with vastly different baseline characteristics strongly supports their external generalizability.
- Further studies are needed to understand the clinical impact of using these models in care and to define performance in other populations including low-risk, younger patients with HTN.