Introduction

Septic shock is the result of a hyper-inflammatory response by immune cells with pathologic “cytokine storm” largely modulated by the ubiquitin-proteasome pathway. Proteasomes regulate a number of cellular processes like aging, cell cycle, and inflammation [1,2]. The catalytic activities of proteasomes mainly reside in three subunits: X (β5), Y (β1) and Z (β2) which correspond to chymotrypsin-like (CT), post-acidic (PA) and trypsin-like (T) activities, respectively. After priming with interferon-y (IFNy) or lipopolysaccharide (LPS); X (β5), Y (β1) and Z (β2) subunits can be induced to LMP7 (β5i), LMP2 (β1i) and LMP10 (β2i) immunoproteasome subunits. Several studies have shown the potential for targeting proteasome inhibition as drug therapy [3]. Previously our lab has identified the drug, resveratrol (Res), as a proteasome inhibitor in mouse macrophages, warranting further investigation on human monocytess.

Hypothesis

We hypothesize that the natural occurring drug, Res, is an inhibitor of LPS induced proteasome activity and inflammation by using human monocyte cell line (THP1).

Methods

THP1 cells (1x10⁴ cells/well) were treated with Res (10 µM – 320 µM) and incubated at 37°C, 5% CO₂ for 30 min. Caspase-Glo reagent (100 µL) was added to a total volume of 200 µL/well. After 30 min, the relative luminescence units (RLU) were read according to manufacturer’s instructions (Promega, WI). For RT-PCR, THP1 cells were differentiated using PMA (phorbol-12-myristate-13-acetate) for 24 hrs, pre-treated with Res (80 µM), followed by LPS. After 4 hrs, cells were centrifuged and stored at -80°C. RNA isolated using Qiagen RNeasy Mini kit and Taqman real-time RT-PCR was performed. Cell viability was measured using MTT assay by exposing THP1 cells to Res (0-100 µM) for 24 hrs. All statistical procedures performed with GraphPad Prism 5 and presented as mean ± SEM. *Statistically significant difference from LPS (P < 0.05).

Results

Figure 1. Resveratrol at 80 µM almost completely blocked all three proteasome activities (chymotrypsin, trypsin and post glutamylase).

Figure 2: PMA differentiated THP1 cells were pretreated with resveratrol (80 µM) and 0.4% DMSO for one hour and then treated with LPS (10 ng/ml) for 4 hrs. Real time RT-PCR was performed on RNA extracted from the treated cells for different proteasome subunits (n=2). LPS treatment results in upregulation of immunoproteasomes subunits and resveratrol is able to decrease the expression of immunoproteasomes. Data are shown as mean ± SEM. *Statistically significant difference from LPS (P < 0.05).

Conclusion

Our data establishes that Res pretreatment reduced LPS-stimulated inflammatory response by downregulating immunoproteasome subunits as well as their activities, while limiting cell toxicity. Previous anti-sepsis drugs targeting only a single agonist have not been successful, presumably because multiple and potentially redundant sites and mediators are involved in sepsis. These findings implicate Res as a prospective, next-generation drug contributing towards the better understanding and management of a broad range of treatment resistant immune diseases, like septic shock.

References/Acknowledgements


This project was supported by the Sarah Morrison Research Award and by grants R01-GM 50870 (NQ), R01-GM102631 (NQ), and R01 GM102631 (NQ), from National Institutes of Health.